Uniformly convex functions and a corresponding class of starlike functions
نویسندگان
چکیده
منابع مشابه
Classes of uniformly starlike and convex functions
Some classes of uniformly starlike and convex functions are introduced. The geometrical properties of these classes and their behavior under certain integral operators are investigated. 1. Introduction. Let A denote the class of functions of the form f (z) = z+ ∞ n=2 a n z
متن کاملParabolic Starlike and Uniformly Convex Functions
The main object of this paper is to derive the sufficient conditions for the function z {pψq (z)} to be in the class of uniformly starlike and uniformly convex function associated with the parabolic region Re {ω} > |ω − 1| . Further, the hadamard product of the function which are analytic in the open unit disk with negative coefficients are also investigated. Finally, similar results using an i...
متن کاملA New Subclass of Uniformly Convex Functions and a Corresponding Subclass of Starlike Functions with Fixed Second Coefficient
Making use of Linear operator theory, we define a new subclass of uniformly convex functions and a corresponding subclass of starlike functions with negative coefficients. The main object of this paper is to obtain coefficient estimates distortion bounds, closure theorems and extreme points for functions belonging to this new class. The results are generalized to families with fixed finitely ma...
متن کاملOn Uniformly Starlike Functions
These are normalized functions regular and univalent in E: IzI < 1, for which f( E) is starlike with respect to the origin. Let y be a circle contained in E and let [ be the center of y. The Pinchuk question is this: Iff(z) is in ST, is it true thatf(y) is a closed curve that is starlike with respect tof(i)? In Section 5 we will see that the answer is no. There seems to be no reason to demand t...
متن کاملUniformly Starlike and Convex Functions with Negative Coefficients
Let A(ω) be the class of analytic functions of the form: f(z) = (z − ω) + ∞ ∑ k=2 ak(z − ω) defined on the open unit disk U = {z : |z| < 1} normalized with f(ω) = 0, f ′(ω)−1 = 0 and ω is an arbitrary fixed point in U. In this paper, we define a subclass of ω − α − uniform starlike and convex functions by using a more generalized form of Ruschewey derivative operator. Several properties such as...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the American Mathematical Society
سال: 1993
ISSN: 0002-9939
DOI: 10.1090/s0002-9939-1993-1128729-7